Ns3 Projects for B.E/B.Tech M.E/M.Tech PhD Scholars.  Phone-Number:9790238391   E-mail: ns3simulation@gmail.com

How to Implement Security Information and Event Management in ns3

To implement the Security Information and Event Management (SIEM) system in ns3 we need to encompass to simulate the network then gathers the data, monitors and investigate the security-related events from different network nodes.

This will demonstrate the simple steps to set up the network, generate events, and collect and analyse these events.

Step-by-Step Implementation:

Step 1: Setup ns3 Environment

Make sure ns3 is installed in the system.

Step 2: Include Necessary Modules

Include the necessary ns3 modules in your script:

#include “ns3/core-module.h”

#include “ns3/network-module.h”

#include “ns3/internet-module.h”

#include “ns3/point-to-point-module.h”

#include “ns3/applications-module.h”

#include “ns3/flow-monitor-module.h”

Step 3: Create the Simulation Script

  1. Setup Nodes and Network:

using namespace ns3;

NS_LOG_COMPONENT_DEFINE (“SIEMSimulation”);

class SIEMApplication : public Application

{

public:

SIEMApplication ();

virtual ~SIEMApplication ();

void Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, uint32_t nPackets, DataRate dataRate);

private:

virtual void StartApplication (void);

virtual void StopApplication (void);

void ScheduleTx (void);

void SendPacket (void);

Ptr<Socket>     m_socket;

Address         m_peer;

uint32_t        m_packetSize;

uint32_t        m_nPackets;

DataRate        m_dataRate;

EventId         m_sendEvent;

bool            m_running;

uint32_t        m_packetsSent;

};

SIEMApplication::SIEMApplication ()

: m_socket (0),

m_peer (),

m_packetSize (0),

m_nPackets (0),

m_dataRate (0),

m_sendEvent (),

m_running (false),

m_packetsSent (0)

{

}

SIEMApplication::~SIEMApplication ()

{

m_socket = 0;

}

void

SIEMApplication::Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, uint32_t nPackets, DataRate dataRate)

{

m_socket = socket;

m_peer = address;

m_packetSize = packetSize;

m_nPackets = nPackets;

m_dataRate = dataRate;

}

void

SIEMApplication::StartApplication (void)

{

m_running = true;

m_packetsSent = 0;

m_socket->Bind ();

m_socket->Connect (m_peer);

SendPacket ();

}

void

SIEMApplication::StopApplication (void)

{

m_running = false;

if (m_sendEvent.IsRunning ())

{

Simulator::Cancel (m_sendEvent);

}

if (m_socket)

{

m_socket->Close ();

}

}

void

SIEMApplication::SendPacket (void)

{

Ptr<Packet> packet = Create<Packet> (m_packetSize);

m_socket->Send (packet);

if (++m_packetsSent < m_nPackets)

{

ScheduleTx ();

}

}

void

SIEMApplication::ScheduleTx (void)

{

if (m_running)

{

Time tNext (Seconds (m_packetSize * 8 / static_cast<double> (m_dataRate.GetBitRate ())));

m_sendEvent = Simulator::Schedule (tNext, &SIEMApplication::SendPacket, this);

}

}

void LogPacketReceive (Ptr<const Packet> packet, const Address &address)

{

NS_LOG_UNCOND (“Packet received at ” << Simulator::Now ().GetSeconds () << ” from ” << address);

}

int main (int argc, char *argv[])

{

CommandLine cmd;

cmd.Parse (argc, argv);

// Create nodes

NodeContainer nodes;

nodes.Create (4);

// Create point-to-point links

PointToPointHelper pointToPoint;

pointToPoint.SetDeviceAttribute (“DataRate”, StringValue (“5Mbps”));

pointToPoint.SetChannelAttribute (“Delay”, StringValue (“2ms”));

NetDeviceContainer devices;

devices = pointToPoint.Install (nodes.Get (0), nodes.Get (1));

devices = pointToPoint.Install (nodes.Get (1), nodes.Get (2));

devices = pointToPoint.Install (nodes.Get (2), nodes.Get (3));

// Install Internet stack

InternetStackHelper stack;

stack.Install (nodes);

// Assign IP addresses

Ipv4AddressHelper address;

address.SetBase (“10.1.1.0”, “255.255.255.0”);

Ipv4InterfaceContainer interfaces = address.Assign (devices);

// Set up applications

TypeId tid = TypeId::LookupByName (“ns3::UdpSocketFactory”);

Ptr<Socket> recvSink = Socket::CreateSocket (nodes.Get (3), tid);

InetSocketAddress local = InetSocketAddress (Ipv4Address::GetAny (), 80);

recvSink->Bind (local);

recvSink->SetRecvCallback (MakeCallback (&LogPacketReceive));

Ptr<Socket> source = Socket::CreateSocket (nodes.Get (0), tid);

InetSocketAddress remote = InetSocketAddress (interfaces.GetAddress (3), 80);

source->Connect (remote);

Ptr<SIEMApplication> app = CreateObject<SIEMApplication> ();

app->Setup (source, remote, 1024, 100, DataRate (“1Mbps”));

nodes.Get (0)->AddApplication (app);

app->SetStartTime (Seconds (1.0));

app->SetStopTime (Seconds (10.0));

// Flow monitor

FlowMonitorHelper flowmon;

Ptr<FlowMonitor> monitor = flowmon.InstallAll ();

Simulator::Stop (Seconds (10.0));

Simulator::Run ();

// Print flow monitor statistics

monitor->SerializeToXmlFile (“flowmon-results.xml”, true, true);

Simulator::Destroy ();

return 0;

}

Step 4: Run the Simulation

Compile and run your simulation script:

./waf configure

./waf build

./waf –run SIEMSimulation

Explanation

  • Node Creation: Create nodes representing different devices in the network.
  • Point-to-Point Links: Configure point-to-point links between nodes.
  • Internet Stack: Install the Internet stack on all nodes.
  • IP Configuration: Assign IP addresses to the nodes.
  • Applications: Set up a custom SIEM application that sends packets and logs received packets.
  • Logging: Implement a function to log packet reception events.
  • Flow Monitor: Use the flow monitor to collect traffic data and save it to an XML file.

Advanced SIEM Techniques

  1. Event Correlation:

Implement event correlation to detect patterns and potential security incidents.

void CorrelateEvents (Ptr<const Packet> packet, const Address &address)

{

// Implement correlation logic here

NS_LOG_UNCOND (“Event correlated at ” << Simulator::Now ().GetSeconds () << ” from ” << address);

}

// In main function

recvSink->SetRecvCallback (MakeCallback (&CorrelateEvents));

  1. Anomaly Detection:

Implement anomaly detection to identify unusual patterns in network traffic.

void DetectAnomalies (Ptr<const Packet> packet, const Address &address)

{

// Implement anomaly detection logic here

NS_LOG_UNCOND (“Anomaly detected at ” << Simulator::Now ().GetSeconds () << ” from ” << address);

}

// In main function

recvSink->SetRecvCallback (MakeCallback (&DetectAnomalies));

  1. Real-Time Alerts:

Implement real-time alerts for detected security events.

void SendAlert (std::string message)

{

NS_LOG_UNCOND (“ALERT: ” << message);

}

// In event correlation or anomaly detection functions

SendAlert (“Potential security incident detected.”);

  1. Log Aggregation:

Aggregate logs from multiple nodes for centralized analysis.

void AggregateLogs (Ptr<const Packet> packet, const Address &address)

{

// Implement log aggregation logic here

NS_LOG_UNCOND (“Log aggregated at ” << Simulator::Now ().GetSeconds () << ” from ” << address);

}

// In main function

recvSink->SetRecvCallback (MakeCallback (&AggregateLogs));

Overall, we had learn and knowledge about SIEM system that were executed in ns3 tool and then we gather the data from various nodes then we analyse the results. We will also offer and deliver the additional information regarding SIEM system.

We conduct comparative analyses in networking and share a range of project topics focused on Security Information and Event Management within ns3 using ns3tool, along with implementation support.