Ns3 Projects for B.E/B.Tech M.E/M.Tech PhD Scholars.  Phone-Number:9790238391   E-mail: ns3simulation@gmail.com

How to Implement Deep Learning based Routing in ns3

To implement deep learning-based routing in ns3, we need to follow several steps. First, we have to create a routing protocol to make routing decisions by using deep learning models. The following steps will guide on how to implement Deep Learning based routing in ns3.

Step-by-step guide to implement this routing in ns3

Step 1: Set Up the ns3 Environment

  1. Install ns-3: Make sure that ns3 is installed on the system.

sudo apt-get update

sudo apt-get install ns3

Create a New ns3 Project: Create a directory for the new project within the ns-3 workspace.

cd ns-3

mkdir scratch/deep-learning-routing

Step 2: Integrate Deep Learning Library

  1. Install PyTorch: Install a deep learning library like PyTorch. Ensure that Python and pip installed on the system.

pip install torch

Step 3: Define the Deep Learning Model

  1. Create a Deep Learning Model: Create a Python script that defines the deep learning model. For simplicity, we’ll create a basic feedforward neural network.

# deep_learning_model.py

import torch

import torch.nn as nn

import torch.optim as optim

class Net(nn.Module):

def __init__(self):

super(Net, self).__init__()

self.fc1 = nn.Linear(10, 50)

self.fc2 = nn.Linear(50, 50)

self.fc3 = nn.Linear(50, 2)  # Output two values for routing decision

def forward(self, x):

x = torch.relu(self.fc1(x))

x = torch.relu(self.fc2(x))

x = self.fc3(x)

return x

def train_model():

net = Net()

criterion = nn.MSELoss()

optimizer = optim.SGD(net.parameters(), lr=0.01)

# Dummy training data

inputs = torch.randn(100, 10)

targets = torch.randn(100, 2)

for epoch in range(1000):  # loop over the dataset multiple times

optimizer.zero_grad()  # zero the parameter gradients

outputs = net(inputs)

loss = criterion(outputs, targets)

loss.backward()

optimizer.step()

torch.save(net.state_dict(), “deep_model.pth”)

print(“Finished Training”)

if __name__ == “__main__”:

train_model()

Train the model:

python deep_learning_model.py

Step 4: Integrate the Model with ns3

  1. Create the Routing Protocol Class: Define a new routing protocol class that uses the trained deep learning model for routing decisions.

// DeepLearningRouting.h

#ifndef DEEP_LEARNING_ROUTING_H

#define DEEP_LEARNING_ROUTING_H

#include “ns3/ipv4-routing-protocol.h”

#include “ns3/ipv4.h”

#include “ns3/ipv4-routing-table-entry.h”

#include “ns3/timer.h”

#include <map>

#include <vector>

#include <torch/script.h>

namespace ns3 {

class DeepLearningRouting : public Ipv4RoutingProtocol {

public:

static TypeId GetTypeId (void);

DeepLearningRouting ();

virtual ~DeepLearningRouting ();

virtual Ptr<Ipv4Route> RouteOutput (Ptr<Packet> p, const Ipv4Header &header, Ptr<NetDevice> oif, Socket::SocketErrno &sockerr);

virtual bool RouteInput (Ptr<const Packet> p, const Ipv4Header &header, Ptr<const NetDevice> idev, UnicastForwardCallback ucb, MulticastForwardCallback mcb, LocalDeliverCallback lcb, ErrorCallback ecb);

virtual void NotifyInterfaceUp (uint32_t interface);

virtual void NotifyInterfaceDown (uint32_t interface);

virtual void NotifyAddAddress (uint32_t interface, Ipv4InterfaceAddress address);

virtual void NotifyRemoveAddress (uint32_t interface, Ipv4InterfaceAddress address);

virtual void SetIpv4 (Ptr<Ipv4> ipv4);

virtual void PrintRoutingTable (Ptr<OutputStreamWrapper> stream, Time::Unit unit = Time::S) const;

private:

torch::jit::script::Module m_model;

Ptr<Ipv4> m_ipv4;

std::map<Ipv4Address, Ipv4RoutingTableEntry> m_routes;

Timer m_timer;

};

} // namespace ns3

 

#endif // DEEP_LEARNING_ROUTING_H

// DeepLearningRouting.cc

#include “DeepLearningRouting.h”

#include “ns3/log.h”

#include “ns3/ipv4-l3-protocol.h”

namespace ns3 {

NS_LOG_COMPONENT_DEFINE (“DeepLearningRouting”);

NS_OBJECT_ENSURE_REGISTERED (DeepLearningRouting);

TypeId DeepLearningRouting::GetTypeId (void) {

static TypeId tid = TypeId (“ns3::DeepLearningRouting”)

.SetParent<Ipv4RoutingProtocol> ()

.SetGroupName (“Internet”)

.AddConstructor<DeepLearningRouting> ();

return tid;

}

DeepLearningRouting::DeepLearningRouting () {

m_model = torch::jit::load(“deep_model.pth”);

}

DeepLearningRouting::~DeepLearningRouting () {}

void DeepLearningRouting::SetIpv4 (Ptr<Ipv4> ipv4) {

m_ipv4 = ipv4;

}

void DeepLearningRouting::NotifyInterfaceUp (uint32_t interface) {}

void DeepLearningRouting::NotifyInterfaceDown (uint32_t interface) {}

void DeepLearningRouting::NotifyAddAddress (uint32_t interface, Ipv4InterfaceAddress address) {}

void DeepLearningRouting::NotifyRemoveAddress (uint32_t interface, Ipv4InterfaceAddress address) {}

Ptr<Ipv4Route> DeepLearningRouting::RouteOutput (Ptr<Packet> p, const Ipv4Header &header, Ptr<NetDevice> oif, Socket::SocketErrno &sockerr) {

// Implement route output logic here using the deep learning model

return 0;

}

bool DeepLearningRouting::RouteInput (Ptr<const Packet> p, const Ipv4Header &header, Ptr<const NetDevice> idev, UnicastForwardCallback ucb, MulticastForwardCallback mcb, LocalDeliverCallback lcb, ErrorCallback ecb) {

// Implement route input logic here using the deep learning model

return false;

}

void DeepLearningRouting::PrintRoutingTable (Ptr<OutputStreamWrapper> stream, Time::Unit unit) const {

// Implement routing table printing here

}

} // namespace ns3

Step 5: Integrate the Routing Protocol in a Simulation

  1. Create a New Simulation Script: Create a new script in the scratch directory to use the deep learning-based routing protocol.

// deep-learning-routing.cc

#include “ns3/core-module.h”

#include “ns3/network-module.h”

#include “ns3/internet-module.h”

#include “ns3/point-to-point-module.h”

#include “ns3/applications-module.h”

#include “DeepLearningRouting.h”

using namespace ns3;

NS_LOG_COMPONENT_DEFINE (“DeepLearningRoutingExample”);

int main (int argc, char *argv[]) {

CommandLine cmd;

cmd.Parse (argc, argv);

NodeContainer nodes;

nodes.Create (4);

PointToPointHelper pointToPoint;

pointToPoint.SetDeviceAttribute (“DataRate”, StringValue (“5Mbps”));

pointToPoint.SetChannelAttribute (“Delay”, StringValue (“2ms”));

NetDeviceContainer devices;

devices = pointToPoint.Install (nodes);

InternetStackHelper stack;

Ptr<DeepLearningRouting> deepRouting = CreateObject<DeepLearningRouting> ();

stack.SetRoutingHelper (deepRouting);

stack.Install (nodes);

Ipv4AddressHelper address;

address.SetBase (“10.1.1.0”, “255.255.255.0”);

Ipv4InterfaceContainer interfaces = address.Assign (devices);

UdpEchoServerHelper echoServer (9);

ApplicationContainer serverApps = echoServer.Install (nodes.Get (3));

serverApps.Start (Seconds (1.0));

serverApps.Stop (Seconds (10.0));

UdpEchoClientHelper echoClient (interfaces.GetAddress (3), 9);

echoClient.SetAttribute (“MaxPackets”, UintegerValue (1));

echoClient.SetAttribute (“Interval”, TimeValue (Seconds (1.0)));

echoClient.SetAttribute (“PacketSize”, UintegerValue (1024));

ApplicationContainer clientApps = echoClient.Install (nodes.Get (0));

clientApps.Start (Seconds (2.0));

clientApps.Stop (Seconds (10.0));

Simulator::Run ();

Simulator::Destroy ();

return 0;

}

Step 6: Compile and Run the Simulation

  1. Compile the Script: Compile the script using the waf build system.

./waf build

Run the Simulation: Run the simulation script and observe the results.

./waf –run scratch/deep-learning-routing

Step 7: Enable Tracing and Analyze Results

  1. Enable Tracing: Add tracing to collect data for analysis.

AsciiTraceHelper ascii;

pointToPoint.EnableAsciiAll (ascii.CreateFileStream (“deep-learning-routing.tr”));

Run the Simulation: Set the simulation stop time and run it.

Simulator::Stop (Seconds (10.0));

Simulator::Run ();

Simulator::Destroy ();

Step 8: Analyze the Results

After running the simulation, analyze the generated trace files (deep-learning-routing.tr) to study the routing behavior and performance.

Finally, we had implemented the Deep Learning based routing in ns3 by creating a routing protocol which utilizes the deep learning models to make routing decisions. After the configuration we have to enable the tracing for anlyzing the results.

A variety of project ideas with comparative analysis focused on Deep Learning-based Routing in the ns3 tool are available for students. For optimal outcomes, visit ns3simulation.com.