Ns3 Projects for B.E/B.Tech M.E/M.Tech PhD Scholars.  Phone-Number:9790238391   E-mail: ns3simulation@gmail.com

How To Implement IoT in Ns3

To implement Internet of Things (IoT) network in ns-3, we have to create a network of IoT devices which communicates with each other with a central server. This setup involves various types of communication protocols, which includes Wi-Fi, LTE and LoRaWAN, that depends on the specific requirements of the simulation. Below are the steps to set up a basic IoT simulation in ns-3 using Wi-Fi for communication.

Steps to implement IoT in ns-3  

  1. Set up your development environment
  • Install ns-3 : Ensure that you have ns-3 installed in your computer. To install, follow the official ns-3 installation guide.
  • Install required modules : Make sure that you have installed all the required ns-3 modules which includes Wi-Fi, mobility and internet modules.
  1. Create a basic Wi-Fi simulation script

Here is a basic IoT scenario setup example script using ns-3 features :

#include “ns3/core-module.h”

#include “ns3/network-module.h”

#include “ns3/internet-module.h”

#include “ns3/wifi-module.h”

#include “ns3/mobility-module.h”

#include “ns3/applications-module.h”

#include “ns3/udp-client-server-helper.h”

using namespace ns3;

NS_LOG_COMPONENT_DEFINE(“IoTNetwork”);

int main(int argc, char* argv[]) {

  // Set simulation parameters

  uint32_t numDevices = 10;

  double simTime = 20.0; // Simulation time in seconds

  CommandLine cmd;

  cmd.AddValue(“numDevices”, “Number of IoT devices”, numDevices);

  cmd.AddValue(“simTime”, “Simulation time”, simTime);

  cmd.Parse(argc, argv);

  // Create IoT devices

  NodeContainer iotDevices;

  iotDevices.Create(numDevices);

  // Create a sink node (e.g., a base station or a central server)

  NodeContainer sinkNode;

  sinkNode.Create(1);

  // Configure WiFi for IoT communication

  WifiHelper wifi;

  wifi.SetStandard(WIFI_PHY_STANDARD_80211b);

  YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default();

  YansWifiChannelHelper wifiChannel = YansWifiChannelHelper::Default();

  wifiPhy.SetChannel(wifiChannel.Create());

  WifiMacHelper wifiMac;

  wifiMac.SetType(“ns3::AdhocWifiMac”);

  NetDeviceContainer iotDevicesNetDevices;

  iotDevicesNetDevices = wifi.Install(wifiPhy, wifiMac, iotDevices);

  NetDeviceContainer sinkDevice;

  sinkDevice = wifi.Install(wifiPhy, wifiMac, sinkNode);

 

  // Install the Internet stack on IoT devices and sink node

  InternetStackHelper internet;

  internet.Install(iotDevices);

  internet.Install(sinkNode);

  // Assign IP addresses to devices

  Ipv4AddressHelper ipv4;

  ipv4.SetBase(“10.1.1.0”, “255.255.255.0”);

  Ipv4InterfaceContainer iotDevicesInterfaces;

  iotDevicesInterfaces = ipv4.Assign(iotDevicesNetDevices);

  Ipv4InterfaceContainer sinkInterface;

  sinkInterface = ipv4.Assign(sinkDevice);

  // Set up mobility

  MobilityHelper mobility;

  mobility.SetMobilityModel(“ns3::ConstantPositionMobilityModel”);

  mobility.Install(iotDevices);

  mobility.Install(sinkNode);

  // Example application: UDP echo server on sink node

  uint16_t port = 9;

  UdpEchoServerHelper echoServer(port);

  ApplicationContainer serverApps = echoServer.Install(sinkNode.Get(0));

  serverApps.Start(Seconds(1.0));

  serverApps.Stop(Seconds(simTime));

  // Example application: UDP echo client on IoT devices

  UdpEchoClientHelper echoClient(sinkInterface.GetAddress(0), port);

  echoClient.SetAttribute(“MaxPackets”, UintegerValue(320));

  echoClient.SetAttribute(“Interval”, TimeValue(Seconds(1.0)));

  echoClient.SetAttribute(“PacketSize”, UintegerValue(1024));

  ApplicationContainer clientApps;

  for (uint32_t i = 0; i < numDevices; ++i) {

    clientApps.Add(echoClient.Install(iotDevices.Get(i)));

  }

  clientApps.Start(Seconds(2.0));

  clientApps.Stop(Seconds(simTime));

  // Enable tracing

  wifiPhy.EnablePcap(“iot-network”, iotDevicesNetDevices);

  wifiPhy.EnablePcap(“iot-network-sink”, sinkDevice);

  // Run the simulation

  Simulator::Stop(Seconds(simTime));

  Simulator::Run();

  Simulator::Destroy();

  return 0;

}

Explanation of the script

In this set up, we had created a network of IoT devices that communicates with each other and with a central server. Let’s have a detailed explanation on the script below:

  1. Include necessary headers : Include all the required headers for ns-3 core, network, internet, Wi-Fi, mobility and applications and UDP client-server helper.
  2. Set simulation Parameters : Define the number of IoT devices and also define the simulation time.
  3. Create nodes : Create IoT devices and also sink the central server.
  4. Set up Wi-Fi : Using YansWifiChannelHelper and YansWifiPhyHelper configure the Wi-Fi channel and physical layer for ad-hoc communication.
  5. Set Up Mobility : Using MobilityHelper, define the positions and mobility models.
  6. Install internet stack : Using InternetStackHelper, install the internet stack on all the nodes.
  7. Assign IP addresses : Using Ipv4AddressHelper, assign IP addresses to the devices.
  8. Install applications : On the sink node, install the UDP echo server and on the IoT devices, install the UDP echo clients to simulate communications.
  9. Enable tracking : Capture packet traces using pcap tracing for analysis.
  10. Run the simulator : Define the simulation stopping time and run the simulator and cleanup using Simulator::Stop, Simulator::Run, and Simulator::Destroy.

Further enhancements

                        In future, we would like to enhance the mobility models, routing protocols, Quality of Services, network performance etc.

  1. Advanced Mobility Models:
    • create more realistic mobility models for IoT devices, that includes random waypoint or models which is based on real-world IoT device movement patterns.
  2. Data Collection and Aggregation:
    • To handle the data efficiently from multiple IoT devices, implement data collection and aggregation techniques.
  3. Routing Protocols:
    • Implement and evaluate various routing protocols which is suitable for IoT networks, like RPL (Routing Protocol for Low-Power and Lossy Networks).
  4. Quality of Service (QoS):
    • To prioritize critical IoT data and ensure timely delivery, implement QoS mechanisms.
  5. Network Performance Metrics:
    • Collect and analyze performance metrics such as throughput, latency, packet delivery ratio, and energy consumption.
  6. Interference Modeling:
    • Model interference and evaluate create great impact on network performance, especially when it comes to densely deployed IoT networks.
  7. Fault Tolerance and Resilience:
    • Implement and evaluate fault tolerance mechanisms and resilience strategies for IoT communication.

Overall, we had implemented Internet of Things (IoT) network in ns-3 by creating a network of IoT devices which communicates with each other and with a central server. Also we provide various information on IoT devices with best implementation.