To implement the network threat intelligence in ns3, we need to encompass to generate the network simulation so only we can find, collect, and evaluate the potential threats that includes to setting up the network topology then emulating the network traffic a classifying abnormalities or malevolent activities, and taking proper actions based on the threat intelligence gathered.
The given below is the procedure on how to implement the network threat intelligence in ns3:
Step-by-Step Implementation:
Step 1: Setup ns3 Environment
Make sure ns3 is installed in the system.
Step 2: Include Necessary Modules
Include the necessary ns3 modules in your script:
#include “ns3/core-module.h”
#include “ns3/network-module.h”
#include “ns3/internet-module.h”
#include “ns3/point-to-point-module.h”
#include “ns3/applications-module.h”
#include “ns3/flow-monitor-module.h”
Step 3: Create the Simulation Script
- Setup Nodes and Network:
using namespace ns3;
NS_LOG_COMPONENT_DEFINE (“ThreatIntelligenceSimulation”);
class ThreatIntelligenceApplication : public Application
{
public:
ThreatIntelligenceApplication ();
virtual ~ThreatIntelligenceApplication ();
void Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, uint32_t nPackets, DataRate dataRate);
private:
virtual void StartApplication (void);
virtual void StopApplication (void);
void ScheduleTx (void);
void SendPacket (void);
Ptr<Socket> m_socket;
Address m_peer;
uint32_t m_packetSize;
uint32_t m_nPackets;
DataRate m_dataRate;
EventId m_sendEvent;
bool m_running;
uint32_t m_packetsSent;
};
ThreatIntelligenceApplication::ThreatIntelligenceApplication ()
: m_socket (0),
m_peer (),
m_packetSize (0),
m_nPackets (0),
m_dataRate (0),
m_sendEvent (),
m_running (false),
m_packetsSent (0)
{
}
ThreatIntelligenceApplication::~ThreatIntelligenceApplication ()
{
m_socket = 0;
}
void
ThreatIntelligenceApplication::Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, uint32_t nPackets, DataRate dataRate)
{
m_socket = socket;
m_peer = address;
m_packetSize = packetSize;
m_nPackets = nPackets;
m_dataRate = dataRate;
}
void
ThreatIntelligenceApplication::StartApplication (void)
{
m_running = true;
m_packetsSent = 0;
m_socket->Bind ();
m_socket->Connect (m_peer);
SendPacket ();
}
void
ThreatIntelligenceApplication::StopApplication (void)
{
m_running = false;
if (m_sendEvent.IsRunning ())
{
Simulator::Cancel (m_sendEvent);
}
if (m_socket)
{
m_socket->Close ();
}
}
void
ThreatIntelligenceApplication::SendPacket (void)
{
Ptr<Packet> packet = Create<Packet> (m_packetSize);
m_socket->Send (packet);
if (++m_packetsSent < m_nPackets)
{
ScheduleTx ();
}
}
void
ThreatIntelligenceApplication::ScheduleTx (void)
{
if (m_running)
{
Time tNext (Seconds (m_packetSize * 8 / static_cast<double> (m_dataRate.GetBitRate ())));
m_sendEvent = Simulator::Schedule (tNext, &ThreatIntelligenceApplication::SendPacket, this);
}
}
void LogPacketReceive (Ptr<const Packet> packet, const Address &address)
{
NS_LOG_UNCOND (“Packet received at ” << Simulator::Now ().GetSeconds () << ” from ” << address);
}
void IdentifyThreats (Ptr<const Packet> packet, const Address &address)
{
// Implement threat identification logic here
NS_LOG_UNCOND (“Potential threat identified at ” << Simulator::Now ().GetSeconds () << ” from ” << address);
}
int main (int argc, char *argv[])
{
CommandLine cmd;
cmd.Parse (argc, argv);
// Create nodes
NodeContainer nodes;
nodes.Create (4);
// Create point-to-point links
PointToPointHelper pointToPoint;
pointToPoint.SetDeviceAttribute (“DataRate”, StringValue (“5Mbps”));
pointToPoint.SetChannelAttribute (“Delay”, StringValue (“2ms”));
NetDeviceContainer devices;
devices = pointToPoint.Install (nodes.Get (0), nodes.Get (1));
devices = pointToPoint.Install (nodes.Get (1), nodes.Get (2));
devices = pointToPoint.Install (nodes.Get (2), nodes.Get (3));
// Install Internet stack
InternetStackHelper stack;
stack.Install (nodes);
// Assign IP addresses
Ipv4AddressHelper address;
address.SetBase (“10.1.1.0”, “255.255.255.0”);
Ipv4InterfaceContainer interfaces = address.Assign (devices);
// Set up applications
TypeId tid = TypeId::LookupByName (“ns3::UdpSocketFactory”);
Ptr<Socket> recvSink = Socket::CreateSocket (nodes.Get (3), tid);
InetSocketAddress local = InetSocketAddress (Ipv4Address::GetAny (), 80);
recvSink->Bind (local);
recvSink->SetRecvCallback (MakeCallback (&LogPacketReceive));
recvSink->SetRecvCallback (MakeCallback (&IdentifyThreats));
Ptr<Socket> source = Socket::CreateSocket (nodes.Get (0), tid);
InetSocketAddress remote = InetSocketAddress (interfaces.GetAddress (3), 80);
source->Connect (remote);
Ptr<ThreatIntelligenceApplication> app = CreateObject<ThreatIntelligenceApplication> ();
app->Setup (source, remote, 1024, 100, DataRate (“1Mbps”));
nodes.Get (0)->AddApplication (app);
app->SetStartTime (Seconds (1.0));
app->SetStopTime (Seconds (10.0));
// Flow monitor
FlowMonitorHelper flowmon;
Ptr<FlowMonitor> monitor = flowmon.InstallAll ();
Simulator::Stop (Seconds (10.0));
Simulator::Run ();
// Print flow monitor statistics
monitor->SerializeToXmlFile (“flowmon-results.xml”, true, true);
Simulator::Destroy ();
return 0;
}
Step 4: Run the Simulation
Compile and run your simulation script:
./waf configure
./waf build
./waf –run ThreatIntelligenceSimulation
Explanation
- Node Creation: Create nodes representing different devices in the network.
- Point-to-Point Links: Configure point-to-point links between nodes.
- Internet Stack: Install the Internet stack on all nodes.
- IP Configuration: Assign IP addresses to the nodes.
- Applications: Set up a custom Threat Intelligence application that sends packets and logs received packets.
- Logging: Implement a function to log packet reception events.
- Threat Identification: Implement a function to identify potential threats based on packet data.
- Flow Monitor: Use the flow monitor to collect traffic data and save it to an XML file.
Advanced Threat Intelligence Techniques
- Event Correlation:
Implement event correlation to detect patterns and potential security incidents.
void CorrelateEvents (Ptr<const Packet> packet, const Address &address)
{
// Implement correlation logic here
NS_LOG_UNCOND (“Event correlated at ” << Simulator::Now ().GetSeconds () << ” from ” << address);
}
// In main function
recvSink->SetRecvCallback (MakeCallback (&CorrelateEvents));
- Anomaly Detection:
Implement anomaly detection to identify unusual patterns in network traffic.
void DetectAnomalies (Ptr<const Packet> packet, const Address &address)
{
// Implement anomaly detection logic here
NS_LOG_UNCOND (“Anomaly detected at ” << Simulator::Now ().GetSeconds () << ” from ” << address);
}
// In main function
recvSink->SetRecvCallback (MakeCallback (&DetectAnomalies));
- Real-Time Alerts:
Implement real-time alerts for detected security events.
void SendAlert (std::string message)
{
NS_LOG_UNCOND (“ALERT: ” << message);
}
// In event correlation or anomaly detection functions
SendAlert (“Potential security incident detected.”);
- Log Aggregation:
Aggregate the logs from multiple nodes for centralized analysis.
void AggregateLogs (Ptr<const Packet> packet, const Address &address)
{
// Implement log aggregation logic here
NS_LOG_UNCOND (“Log aggregated at ” << Simulator::Now ().GetSeconds () << ” from ” << address);
}
// In main function
recvSink->SetRecvCallback (MakeCallback (&AggregateLogs));
Here, we clearly explained about how to gather the data and identify the attacks in the generated network by using proper methods in the network simulator (ns3). We also deliver the valuable insights regarding the threat intelligence.
We handle the implementation of Network Threat Intelligence in the ns3 program, ensuring your projects run smoothly. Reach out to us for a successful collaboration!