To implement the prediction-based sensor location in ns3 has encompasses to generate the network where the locations of mobile sensor nodes are forecast based on their earlier positions and velocities. This is usually utilized in these scenarios like mobile wireless sensor networks (MWSNs) and the MWSNs nodes interchange, and their imminent positions prerequisite to be estimated for tasks such as data collection, routing, and resource allocation. Here, we provide the step-by-step procedure to setup a simulation for prediction-based sensor location in ns3.
Step-by-Step Procedures:
Step 1: Setup ns3 Environment
Make sure ns3 is installed in the system and checks its configured properly.
git clone https://gitlab.com/nsnam/ns-3-dev.git
cd ns-3-dev
./waf configure
./waf build
Step 2: Create the Prediction-Based Sensor Location Simulation Script
We will create a script that sets up a network with mobile sensor nodes and predicts their future locations based on their current positions and velocities.
#include “ns3/core-module.h”
#include “ns3/network-module.h”
#include “ns3/internet-module.h”
#include “ns3/point-to-point-module.h”
#include “ns3/mobility-module.h”
#include “ns3/applications-module.h”
#include “ns3/flow-monitor-module.h”
using namespace ns3;
NS_LOG_COMPONENT_DEFINE(“PredictionSensorLocationExample”);
// Function to predict future location based on current position and velocity
Vector PredictLocation(Ptr<ConstantVelocityMobilityModel> mobilityModel, double predictionTime)
{
Vector position = mobilityModel->GetPosition();
Vector velocity = mobilityModel->GetVelocity();
Vector predictedPosition = Vector(position.x + velocity.x * predictionTime,
position.y + velocity.y * predictionTime,
position.z + velocity.z * predictionTime);
return predictedPosition;
}
void CourseChange(std::string context, Ptr<const MobilityModel> model)
{
Ptr<ConstantVelocityMobilityModel> mobilityModel = DynamicCast<ConstantVelocityMobilityModel>(model);
if (mobilityModel)
{
Vector currentPosition = mobilityModel->GetPosition();
Vector predictedPosition = PredictLocation(mobilityModel, 5.0); // Predict location 5 seconds into the future
NS_LOG_UNCOND(Simulator::Now().GetSeconds() << “s: Node at (” << currentPosition.x << “, ” << currentPosition.y << “, ” << currentPosition.z << “)”);
NS_LOG_UNCOND(“Predicted Position at ” << (Simulator::Now().GetSeconds() + 5.0) << “s: (” << predictedPosition.x << “, ” << predictedPosition.y << “, ” << predictedPosition.z << “)”);
}
}
int main(int argc, char *argv[])
{
CommandLine cmd;
cmd.Parse(argc, argv);
// Create nodes
NodeContainer sensorNodes;
sensorNodes.Create(5); // Five mobile sensor nodes
// Set up mobility model
MobilityHelper mobility;
mobility.SetPositionAllocator(“ns3::GridPositionAllocator”,
“MinX”, DoubleValue(0.0),
“MinY”, DoubleValue(0.0),
“DeltaX”, DoubleValue(10.0),
“DeltaY”, DoubleValue(10.0),
“GridWidth”, UintegerValue(3),
“LayoutType”, StringValue(“RowFirst”));
mobility.SetMobilityModel(“ns3::ConstantVelocityMobilityModel”);
mobility.Install(sensorNodes);
// Set initial positions and velocities
for (uint32_t i = 0; i < sensorNodes.GetN(); ++i)
{
Ptr<ConstantVelocityMobilityModel> mobilityModel = sensorNodes.Get(i)->GetObject<ConstantVelocityMobilityModel>();
mobilityModel->SetPosition(Vector(i * 10.0, 0.0, 0.0));
mobilityModel->SetVelocity(Vector(2.0, 1.0, 0.0)); // Set a constant velocity for each node
}
// Log position changes
Config::Connect(“/NodeList/*/$ns3::MobilityModel/CourseChange”, MakeCallback(&CourseChange));
// Install the internet stack
InternetStackHelper stack;
stack.Install(sensorNodes);
// Create a point-to-point link to simulate communication (optional)
NodeContainer p2pNodes;
p2pNodes.Add(sensorNodes.Get(0));
p2pNodes.Create(1);
PointToPointHelper pointToPoint;
pointToPoint.SetDeviceAttribute(“DataRate”, StringValue(“5Mbps”));
pointToPoint.SetChannelAttribute(“Delay”, StringValue(“2ms”));
NetDeviceContainer devices;
devices = pointToPoint.Install(p2pNodes);
Ipv4AddressHelper address;
address.SetBase(“10.1.1.0”, “255.255.255.0”);
Ipv4InterfaceContainer interfaces = address.Assign(devices);
// Install applications to generate traffic (optional)
uint16_t port = 9;
OnOffHelperonoff(“ns3::UdpSocketFactory”,Address(InetSocketAddress(interfaces.GetAddress(1), port)));
onoff.SetConstantRate(DataRate(“1Mbps”));
ApplicationContainer apps = onoff.Install(p2pNodes.Get(0));
apps.Start(Seconds(1.0));
apps.Stop(Seconds(10.0));
PacketSinkHelper sink(“ns3::UdpSocketFactory”, Address(InetSocketAddress(Ipv4Address::GetAny(), port)));
apps = sink.Install(p2pNodes.Get(1));
apps.Start(Seconds(0.0));
apps.Stop(Seconds(10.0));
// Enable FlowMonitor to measure performance metrics
FlowMonitorHelper flowmon;
Ptr<FlowMonitor> monitor = flowmon.InstallAll();
// Run the simulation
Simulator::Stop(Seconds(15.0));
Simulator::Run();
// Print per-flow statistics
monitor->CheckForLostPackets();
Ptr<Ipv4FlowClassifier> classifier = DynamicCast<Ipv4FlowClassifier>(flowmon.GetClassifier());
std::map<FlowId, FlowMonitor::FlowStats> stats = monitor->GetFlowStats();
for (std::map<FlowId, FlowMonitor::FlowStats>::const_iterator i = stats.begin(); i != stats.end(); ++i)
{
Ipv4FlowClassifier::FiveTuple t = classifier->FindFlow(i->first);
NS_LOG_UNCOND(“Flow ” << i->first << ” (” << t.sourceAddress << ” -> ” << t.destinationAddress << “)”);
NS_LOG_UNCOND(” Tx Packets: ” << i->second.txPackets);
NS_LOG_UNCOND(” Tx Bytes: ” << i->second.txBytes);
NS_LOG_UNCOND(” Rx Packets: ” << i->second.rxPackets);
NS_LOG_UNCOND(” Rx Bytes: ” << i->second.rxBytes);
NS_LOG_UNCOND(” Lost Packets: ” << i->second.lostPackets);
NS_LOG_UNCOND(” Throughput: ” << i->second.rxBytes * 8.0 / (i->second.timeLastRxPacket.GetSeconds() – i->second.timeFirstTxPacket.GetSeconds()) / 1024 / 1024 << ” Mbps”);
}
// Clean up
Simulator::Destroy();
return 0;
}
Step 3: Compile and Run the Simulation
- Compile the Simulation:
./waf configure –enable-examples
./waf build
Run the Simulation:
./waf –run scratch/prediction-sensor-location-example
Step 4: Analyse Results
The simulation script sets up a network with mobile sensor nodes and predicts their future locations based on their current positions and velocities. The positions and predicted positions of the sensor nodes are logged as they move.
Additional Considerations
To extend the functionality of your prediction-based sensor location simulation, consider the following:
1. Advanced Prediction Algorithms
To develop prediction accuracy is to execute more advanced prediction techniques that take into account acceleration, past positions, and environmental factors.
2. Dynamic Mobility Models
Integrate dynamic mobility models that simulate more realistic movement patterns, like random waypoint, Gauss-Markov, or Levy walk models.
3. Network Protocols
To utilize the predicted positions for tasks such as routing, data aggregation, or resource allocation has to integrate the network protocols
4. Performance Metrics
Collect and analyze additional metrics such as prediction accuracy, network latency, energy consumption, and packet delivery ratio to evaluate the performance of the prediction algorithms.
5. Real-World Scenarios
Simulate real-world scenarios like environmental monitoring, disaster response, or wildlife tracking to test the effectiveness of the prediction-based sensor location approach in practical applications.
Here, we thoroughly understood the basic implementation procedures to execute and perform the results for prediction-based sensor location using the ns3 tool. More information related to the prediction-based sensor location will be provided.
Implementing Prediction sensor location in the ns3 tool will be executed by us. Our team of experts can provide you with the best guidance on how to effectively apply it to your project. Additionally, our developers can offer you more project ideas and help you with its execution, particularly in scenarios involving mobile wireless sensor networks (MWSNs) and the interchange of MWSNs nodes.