Multi-radio access technology (RAT) cellular communication systems limit connected users to utilizing a single RAT even when employing multi-mode user equipment (UE) capable of utilizing multi-RATs. Single-mode access, combined with static spectrum partitioning between co-deployed RATs and independent resource allocation for employed RATs, results in suboptimal spectrum utilization in multi-RAT systems.
This paper models user access in multi-RAT systems and proposes enabling multi-mode UE to simultaneously utilize multiple RATs, using multi-RAT carrier aggregation, to improve the performance and spectrum utilization of multi-RAT systems. Several realizations of multi-mode access with varying implementation requirements are presented and discussed. Detailed system-level simulations, for a system co-deploying High Speed Packet Access (HSPA) and Long-Term Evolution (LTE), are performed to investigate the gains and limitations of different user access configurations in multi-RAT systems.