Ns3 Projects for B.E/B.Tech M.E/M.Tech PhD Scholars.  Phone-Number:9790238391   E-mail: ns3simulation@gmail.com

How To Implement Mobile Computing In Ns3

To implement mobile computing in ns-3, we have to simulate a network with mobile nodes. The mobile nodes should communicate over a wireless network. By using this simulation, we can incorporate various types of communication protocols which includes Wi-Fi, LTE, or other mobile communication standards that fully depends on your specific requirements. Let’s dive into the steps for setting up a basic mobile computing simulation in ns-3 using Wi-Fi. All areas of mobile computing in ns-3 with good simulation support are aided by our team.

Steps to implement mobile computing in ns-3

  1. Set up your development environment
  • Install ns-3 : Ensure that you have ns-3 installed in your computer. To install, follow the official ns-3 installation guide.
  • Install required modules : Make sure that you have installed all the required ns-3 modules which includes Internet, mobility and Wi-Fi modules.
  1. Create a basic Wi-Fi simulation script

Here is a basic mobile computing scenario setup sample script using ns-3 features :

#include “ns3/core-module.h”

#include “ns3/network-module.h”

#include “ns3/internet-module.h”

#include “ns3/wifi-module.h”

#include “ns3/mobility-module.h”

#include “ns3/applications-module.h”

using namespace ns3;

NS_LOG_COMPONENT_DEFINE(“MobileComputingExample”);

int main(int argc, char *argv[])

{

  // Set simulation parameters

  uint32_t numNodes = 5;

  double simTime = 20.0; // Simulation time in seconds

  double nodeSpeed = 20.0; // Speed of nodes in m/s

  CommandLine cmd;

  cmd.AddValue(“numNodes”, “Number of nodes”, numNodes);

  cmd.AddValue(“simTime”, “Simulation time”, simTime);

  cmd.AddValue(“nodeSpeed”, “Speed of nodes”, nodeSpeed);

  cmd.Parse(argc, argv);

  // Create nodes

  NodeContainer nodes;

  nodes.Create(numNodes);

  // Set up WiFi

  WifiHelper wifi;

  wifi.SetStandard(WIFI_PHY_STANDARD_80211n_5GHZ);

  YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default();

  YansWifiChannelHelper wifiChannel = YansWifiChannelHelper::Default();

  wifiPhy.SetChannel(wifiChannel.Create());

  WifiMacHelper wifiMac;

  wifiMac.SetType(“ns3::AdhocWifiMac”);

  NetDeviceContainer devices = wifi.Install(wifiPhy, wifiMac, nodes);

  // Install the Internet stack on nodes

  InternetStackHelper internet;

  internet.Install(nodes);

 

  // Assign IP addresses to devices

  Ipv4AddressHelper ipv4;

  ipv4.SetBase(“10.1.1.0”, “255.255.255.0”);

  Ipv4InterfaceContainer interfaces = ipv4.Assign(devices);

  // Set up mobility

  MobilityHelper mobility;

  mobility.SetPositionAllocator(“ns3::GridPositionAllocator”,

                                “MinX”, DoubleValue(0.0),

                                “MinY”, DoubleValue(0.0),

                                “DeltaX”, DoubleValue(5.0),

                                “DeltaY”, DoubleValue(10.0),

                                “GridWidth”, UintegerValue(3),

                                “LayoutType”, StringValue(“RowFirst”));

  mobility.SetMobilityModel(“ns3::ConstantVelocityMobilityModel”);

  mobility.Install(nodes);

  for (uint32_t i = 0; i < nodes.GetN(); ++i) {

    Ptr<ConstantVelocityMobilityModel> mobilityModel = nodes.Get(i)->GetObject<ConstantVelocityMobilityModel>();

    mobilityModel->SetVelocity(Vector(nodeSpeed, 0, 0));

  }

  // Install applications

  uint16_t port = 9;

  UdpEchoServerHelper echoServer(port);

  ApplicationContainer serverApps = echoServer.Install(nodes.Get(0));

  serverApps.Start(Seconds(1.0));

  serverApps.Stop(Seconds(simTime));

  UdpEchoClientHelper echoClient(interfaces.GetAddress(0), port);

  echoClient.SetAttribute(“MaxPackets”, UintegerValue(320));

  echoClient.SetAttribute(“Interval”, TimeValue(Seconds(1.0)));

  echoClient.SetAttribute(“PacketSize”, UintegerValue(1024));

  ApplicationContainer clientApps;

  for (uint32_t i = 1; i < nodes.GetN(); ++i) {

    clientApps.Add(echoClient.Install(nodes.Get(i)));

  }

  clientApps.Start(Seconds(2.0));

  clientApps.Stop(Seconds(simTime));

  // Enable tracing

  wifiPhy.EnablePcap(“mobile-computing”, devices);

  // Run the simulation

  Simulator::Stop(Seconds(simTime));

  Simulator::Run();

  Simulator::Destroy();

  return 0;

}

Explanation of the script

In this set up, we had created a network with VLANs to segment traffic within the network using ns-3 features. Let’s have a detailed explanation on the script below:

  1. Include necessary headers : Include all the required headers for ns-3 core, network, internet, Wi-Fi, mobility and application modules.
  2. Set simulation Parameters : Define the number of nodes and also define the simulation time and speed of the nodes.
  3. Create nodes : Using NodeContainer, create nodes.
  4. Set up Wi-Fi : Using YansWifiChannelHelper and YansWifiPhyHelper configure the Wi-Fi channel and physical layer and WifiMacHelper for ad-hoc communication.
  5. Set Up Mobility : Using MobilityHelper, define the positions and mobility models. In this   case, ConstantVelocityMobilityModel is used to simulate nodes moving at a constant speed.
  6. Install internet stack : Using InternetStackHelper, install the internet stack on all the nodes.
  7. Assign IP addresses : Using Ipv4AddressHelper, assign IP addresses to the devices.
  8. Install applications : On the first node, install the UDP echo server and on the remaining nodes, install the UDP echo clients to simulate communications.
  9. Enable tracking : Capture packet traces using pcap tracing for analysis.
  10. Run the simulator : Define the simulation stopping time and run the simulator and cleanup using Simulator::Stop, Simulator::Run, and Simulator::Destroy.

Future enhancements

                        In future, we would like to enhance the mobility models, change the Wi-Fi standards, implement QoS etc.

  1. Advanced Mobility Models:
    • Mobile node should include more realistic mobility models like random waypoint or models based on real-world movement patterns.
  2. Data Collection and Aggregation:
    • To handle data in a efficient manner from multiple mobile devices, implement data collection and aggregation techniques.
  3. Routing Protocols:
    • create and evaluate different routing protocols that suits mobile ad-hoc networks, like AODV, DSDV, or OLSR.
  4. Quality of Service (QoS):
    • Prioritize traffic by implementing QoS mechanisms and also ensure timely delivery.
  5. Network Performance Metrics:
    • Collect and analyze performance metrics such as throughput, latency, packet delivery ratio, and resource utilization.
  6. Interference Modeling :
    • Model interference from ambient light and other sources and evaluate it creates a great impact on network performance.
  7. Fault Tolerance and Resilience:
    • Implement and evaluate fault tolerance mechanisms and resilience strategies for mobile computing.

Overall, we had successfully implemented Mobile Computing in ns-3 by a setting up a basic mobile computing simulation using ns-3 features. Also, we provide more simulation support on Mobile Computing.