To implement a heterogeneous satellite cooperative network in ns3, we need to simulate the communication between different types of satellites (e.g., GEO, MEO, LEO) and ground stations. In this implementation we have to represent the satellites and ground stations, simulating data transmission between them, and configure their communication links by setting up the nodes.
The following steps will guide to set-up a basic simulation of a heterogeneous satellite cooperative network in ns3.
Step-by-step guide to implement heterogeneous satellite cooperative network in ns3.
Step 1: Setup ns3 Environment
Make sure that ns3 installed and properly configured.
git clone https://gitlab.com/nsnam/ns-3-dev.git
cd ns-3-dev
./waf configure
./waf build
Step 2: Create the Heterogeneous Satellite Cooperative Network Simulation Script
We will create a script that sets up different types of satellites (GEO, MEO, LEO), ground stations, and simulates data transmission between them.
#include “ns3/core-module.h”
#include “ns3/network-module.h”
#include “ns3/internet-module.h”
#include “ns3/point-to-point-module.h”
#include “ns3/applications-module.h”
#include “ns3/mobility-module.h”
#include “ns3/flow-monitor-module.h”
using namespace ns3;
NS_LOG_COMPONENT_DEFINE(“HeterogeneousSatelliteCooperativeExample”);
int main(int argc, char *argv[])
{
CommandLine cmd;
cmd.Parse(argc, argv);
// Create satellite nodes
NodeContainer geoSatelliteNode;
geoSatelliteNode.Create(1); // One GEO satellite
NodeContainer meoSatelliteNode;
meoSatelliteNode.Create(1); // One MEO satellite
NodeContainer leoSatelliteNodes;
leoSatelliteNodes.Create(2); // Two LEO satellites
// Create ground station nodes
NodeContainer groundStationNodes;
groundStationNodes.Create(2); // Two ground stations
// Set up point-to-point links for the ground-to-satellite and satellite-to-satellite communication
PointToPointHelper p2p;
p2p.SetDeviceAttribute(“DataRate”, StringValue(“1Gbps”));
p2p.SetChannelAttribute(“Delay”, StringValue(“300ms”)); // High delay for GEO satellite communication
NetDeviceContainer devices;
devices = p2p.Install(groundStationNodes.Get(0), geoSatelliteNode.Get(0));
devices.Add(p2p.Install(geoSatelliteNode.Get(0), meoSatelliteNode.Get(0)));
// MEO to LEO
p2p.SetChannelAttribute(“Delay”, StringValue(“100ms”)); // Lower delay for MEO satellite communication
devices.Add(p2p.Install(meoSatelliteNode.Get(0), leoSatelliteNodes.Get(0)));
// LEO to LEO
p2p.SetChannelAttribute(“Delay”, StringValue(“20ms”)); // Lowest delay for LEO satellite communication
devices.Add(p2p.Install(leoSatelliteNodes.Get(0), leoSatelliteNodes.Get(1)));
// LEO to ground
devices.Add(p2p.Install(leoSatelliteNodes.Get(1), groundStationNodes.Get(1)));
// Install the internet stack
InternetStackHelper stack;
stack.Install(geoSatelliteNode);
stack.Install(meoSatelliteNode);
stack.Install(leoSatelliteNodes);
stack.Install(groundStationNodes);
// Assign IP addresses
Ipv4AddressHelper address;
address.SetBase(“10.1.1.0”, “255.255.255.0”);
Ipv4InterfaceContainer interfaces = address.Assign(devices);
// Set up mobility model for satellites and ground stations
MobilityHelper mobility;
// GEO satellite
mobility.SetMobilityModel(“ns3::ConstantPositionMobilityModel”);
mobility.Install(geoSatelliteNode);
Ptr<ConstantPositionMobilityModel> geoPos = geoSatelliteNode.Get(0)->GetObject<ConstantPositionMobilityModel>();
geoPos->SetPosition(Vector(0.0, 0.0, 35786.0)); // Geostationary orbit altitude
// MEO satellite
mobility.Install(meoSatelliteNode);
Ptr<ConstantPositionMobilityModel> meoPos = meoSatelliteNode.Get(0)->GetObject<ConstantPositionMobilityModel>();
meoPos->SetPosition(Vector(0.0, 0.0, 20000.0)); // Medium Earth orbit altitude
// LEO satellites
mobility.Install(leoSatelliteNodes.Get(0));
Ptr<ConstantPositionMobilityModel> leoPos0 = leoSatelliteNodes.Get(0)->GetObject<ConstantPositionMobilityModel>();
leoPos0->SetPosition(Vector(0.0, 0.0, 1000.0)); // Low Earth orbit altitude
mobility.Install(leoSatelliteNodes.Get(1));
Ptr<ConstantPositionMobilityModel> leoPos1 = leoSatelliteNodes.Get(1)->GetObject<ConstantPositionMobilityModel>();
leoPos1->SetPosition(Vector(1000.0, 0.0, 1000.0)); // Low Earth orbit altitude
// Ground stations
mobility.SetMobilityModel(“ns3::ConstantPositionMobilityModel”);
mobility.Install(groundStationNodes);
// Install applications to generate traffic
uint16_t port = 9;
// Ground station 0 will send data to Ground station 1 via satellites
OnOffHelperonoff(“ns3::UdpSocketFactory”, Address(InetSocketAddress(interfaces.GetAddress(5), port)));
onoff.SetConstantRate(DataRate(“500Mbps”));
ApplicationContainer apps = onoff.Install(groundStationNodes.Get(0));
apps.Start(Seconds(1.0));
apps.Stop(Seconds(10.0));
// Install packet sink on Ground station 1 to receive packets
PacketSinkHelpersink(“ns3::UdpSocketFactory”, Address(InetSocketAddress(Ipv4Address::GetAny(), port)));
apps = sink.Install(groundStationNodes.Get(1));
apps.Start(Seconds(0.0));
apps.Stop(Seconds(10.0));
// Enable FlowMonitor to measure performance metrics
FlowMonitorHelper flowmon;
Ptr<FlowMonitor> monitor = flowmon.InstallAll();
// Run the simulation
Simulator::Stop(Seconds(10.0));
Simulator::Run();
// Print per-flow statistics
monitor->CheckForLostPackets();
Ptr<Ipv4FlowClassifier>classifier = DynamicCast<Ipv4FlowClassifier>(flowmon.GetClassifier());
std::map<FlowId, FlowMonitor::FlowStats> stats = monitor->GetFlowStats();
for (std::map<FlowId, FlowMonitor::FlowStats>::const_iterator i = stats.begin(); i != stats.end(); ++i)
{
Ipv4FlowClassifier::FiveTuple t = classifier->FindFlow(i->first);
NS_LOG_UNCOND(“Flow ” << i->first << ” (” << t.sourceAddress << ” -> ” << t.destinationAddress << “)”);
NS_LOG_UNCOND(” Tx Packets: ” << i->second.txPackets);
NS_LOG_UNCOND(” Tx Bytes: ” << i->second.txBytes);
NS_LOG_UNCOND(” Rx Packets: ” << i->second.rxPackets);
NS_LOG_UNCOND(” Rx Bytes: ” << i->second.rxBytes);
NS_LOG_UNCOND(” Lost Packets: ” << i->second.lostPackets);
NS_LOG_UNCOND(” Throughput: ” << i->second.rxBytes * 8.0 / (i->second.timeLastRxPacket.GetSeconds() – i->second.timeFirstTxPacket.GetSeconds()) / 1024 / 1024 << ” Mbps”);
}
// Clean up
Simulator::Destroy();
return 0;
}
Step 3: Compile and Run the Simulation
- Compile the Simulation:
./waf configure –enable-examples
./waf build
Run the Simulation:
./waf –run scratch/heterogeneous-satellite-cooperative-example
Step 4: Analyze Results
The simulation script sets up a heterogeneous satellite cooperative network with different types of satellites (GEO, MEO, LEO) and ground stations, and simulates data transmission. FlowMonitor is used to collect and print out statistics about the traffic flows, such as packet loss, throughput, and delay.
Additional Considerations
To extend the functionality of heterogeneous satellite cooperative network simulation, consider the following:
1. Advanced Mobility Models
Implement more realistic mobility models to simulate the movement of satellites in different orbits, including circular and elliptical trajectories.
2. Dynamic Routing
Integrate dynamic routing protocols to manage the changing topology of the satellite network as satellites move.
3. Fault Tolerance
Implement fault tolerance mechanisms to handle link failures and satellite outages, ensuring continuous communication.
4. Traffic Patterns
Simulate different types of traffic patterns, such as IoT data, VoIP, video streaming, and bulk data transfer, to study their impact on the network.
5. Quality of Service (QoS)
Implement QoS mechanisms to prioritize certain types of traffic and ensure that critical data flows receive the necessary bandwidth and low latency.
6. Performance Metrics
Collect and analyze additional metrics such as jitter, packet delay variation, and error rates to evaluate the network performance more comprehensively.
At last, we have concluded that by simulating the communication between different types of satellite and ground station we can implement the Heterogeneous satellite cooperative in ns3.
If you face difficulties in Implementation of Heterogeneous satellite cooperative in ns3tool after referring the above steps, then you can connect with our team for more help. We share with you best project ideas.