Ns3 Projects for B.E/B.Tech M.E/M.Tech PhD Scholars.  Phone-Number:9790238391   E-mail: ns3simulation@gmail.com

How to Implement Network Edge Intelligence in ns3

To implement Network Edge Intelligence in ns3, we need to follow several steps. At the edge of the network we need to integrate artificial intelligence or machine learning algorithms. This algorithm will enhance the network performance, manage resources efficiently, and provide real-time analytics. The following steps will guide on implementing Edge intelligence in ns3.

Step-by-step guide to implement Network Edge Intelligence in ns3:

  1. Install ns-3 and Required Dependencies: Ensure that the latest version of ns3 and any required dependencies for machine learning, such as Python libraries (TensorFlow, PyTorch, etc.).
  2. Create a Machine Learning Model: Develop or use an existing machine learning model suitable for the edge intelligence application. For example, a model for traffic prediction, resource allocation, or anomaly detection.
  3. Integrate the ML Model into ns3:
    • Write a Python script for the ML model.
    • Use ns3-gym to interface ns3 with the ML model in Python.
  4. Implement Edge Intelligence Logic: Modify or create ns3 modules to include edge intelligence logic. This could involve updating packet processing, scheduling, or routing decisions based on ML model predictions.

Detailed Implementation:

  1. Install ns-3 and ns3-gym: Follow the installation instructions for ns3 and ns3 gym from their respective repositories

git clone https://gitlab.com/nsnam/ns-3-dev.git

cd ns-3-dev

./waf configure –enable-examples –enable-tests

./waf build

Set Up the Machine Learning Model: Create a Python script for the ML model. Here’s an example of a simple traffic prediction model using a neural network:

# traffic_prediction_model.py

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

import numpy as np

# Dummy data for example

X_train = np.random.rand(100, 10)

y_train = np.random.rand(100, 1)

model = Sequential([

Dense(64, activation=’relu’, input_shape=(10,)),

Dense(64, activation=’relu’),

Dense(1)

])

model.compile(optimizer=’adam’, loss=’mse’)

model.fit(X_train, y_train, epochs=10)

def predict_traffic(input_data):

return model.predict(input_data)

Interface ns-3 with the ML Model using ns3-gym: Set up ns3-gym to enable communication between ns-3 and the ML model.

# ns3_interface.py

import gym

import tensorflow as tf

from traffic_prediction_model import predict_traffic

class Ns3Env(gym.Env):

def __init__(self):

super(Ns3Env, self).__init__()

# Define action and observation space

self.action_space = gym.spaces.Discrete(2)

self.observation_space = gym.spaces.Box(low=0, high=1, shape=(10,), dtype=np.float32)

def step(self, action):

observation = np.random.rand(10)

reward = predict_traffic(observation)

done = False

info = {}

return observation, reward, done, info

def reset(self):

return np.random.rand(10)

if __name__ == “__main__”:

env = Ns3Env()

for _ in range(10):

observation = env.reset()

for _ in range(100):

action = env.action_space.sample()

observation, reward, done, info = env.step(action)

if done:

break

Modify ns-3 Modules: Create or modify ns-3 modules to use the edge intelligence logic. For instance, modifying a packet scheduler to use traffic predictions for resource allocation.

// MyPacketScheduler.h

#include “ns3/scheduler.h”

#include “ns3/queue.h”

namespace ns3 {

class MyPacketScheduler : public Scheduler {

public:

static TypeId GetTypeId();

MyPacketScheduler();

virtual ~MyPacketScheduler();

virtual void SchedulePackets();

private:

Ptr<Queue> m_queue;

};

} // namespace ns3

// MyPacketScheduler.cc

#include “MyPacketScheduler.h”

#include “ns3/log.h”

#include “ns3/simulator.h”

#include <Python.h>

namespace ns3 {

 

NS_LOG_COMPONENT_DEFINE(“MyPacketScheduler”);

TypeId

MyPacketScheduler::GetTypeId() {

static TypeId tid = TypeId(“ns3::MyPacketScheduler”)

.SetParent<Scheduler>()

.SetGroupName(“TrafficControl”)

.AddConstructor<MyPacketScheduler>();

return tid;

}

MyPacketScheduler::MyPacketScheduler() {}

MyPacketScheduler::~MyPacketScheduler() {}

void

MyPacketScheduler::SchedulePackets() {

NS_LOG_FUNCTION(this);

// Call the Python function to get traffic prediction

Py_Initialize();

PyObject* pName = PyUnicode_DecodeFSDefault(“traffic_prediction_model”);

PyObject* pModule = PyImport_Import(pName);

Py_DECREF(pName);

if (pModule != NULL) {

PyObject* pFunc = PyObject_GetAttrString(pModule, “predict_traffic”);

if (PyCallable_Check(pFunc)) {

PyObject* pArgs = PyTuple_New(1);

PyObject* pValue = PyFloat_FromDouble(1.0); // Example input

PyTuple_SetItem(pArgs, 0, pValue);

PyObject* pResult = PyObject_CallObject(pFunc, pArgs);

if (pResult != NULL) {

double trafficPrediction = PyFloat_AsDouble(pResult);

Py_DECREF(pResult);

// Use traffic prediction for scheduling logic

// Example: prioritize or throttle packets based on prediction

}

Py_DECREF(pArgs);

}

Py_XDECREF(pFunc);

Py_DECREF(pModule);

}

Py_Finalize();

// Continue with normal scheduling

Ptr<Packet> packet = m_queue->Dequeue();

// Process packet…

}

} // namespace ns3

Update Simulation Script: Integrate the new scheduler into your ns-3 simulation script.

#include “ns3/core-module.h”

#include “ns3/network-module.h”

#include “ns3/internet-module.h”

#include “ns3/point-to-point-module.h”

#include “MyPacketScheduler.h”

using namespace ns3;

int main(int argc, char *argv[]) {

CommandLine cmd;

cmd.Parse(argc, argv);

NodeContainer nodes;

nodes.Create(2);

PointToPointHelper pointToPoint;

pointToPoint.SetDeviceAttribute(“DataRate”, StringValue(“5Mbps”));

pointToPoint.SetChannelAttribute(“Delay”, StringValue(“2ms”));

NetDeviceContainer devices;

devices = pointToPoint.Install(nodes);

InternetStackHelper stack;

stack.Install(nodes);

Ipv4AddressHelper address;

address.SetBase(“10.1.1.0”, “255.255.255.0”);

Ipv4InterfaceContainer interfaces = address.Assign(devices);

// Install custom packet scheduler

Ptr<MyPacketScheduler> scheduler = CreateObject<MyPacketScheduler>();

// Configure scheduler…

Simulator::Run();

Simulator::Destroy();

return 0;

}

From the given above steps and examples we had completely learned about the implementation process of edge intelligence by using the artificial intelligence or machine learning algorithm that integrates at the edge of the network.

If you want to get the best results for your project analysis and performance in Network Edge Intelligence using the ns3 program, we’re here to help! The developers at ns3simulation.com can provide you with project ideas that fit your interests. We have a large team and plenty of resources to support you in completing your work successfully.